

NORWEGIAN TUNNEL SAFETY CONFERENCE 2017

Stefan Gassmann

Head of Product Management Complex Systems

BIG TUNNEL FIRES IN THE ALPS

1999: Montblanc Tunnel (F-I)

Killed: 41 people

Tunnel closure: 3 months

Repair costs: 28 millions

1999: Tauern Tunnel (AT)

Killed / injured: 12 / 42 people

Tunnel closure: 3 months

Repair costs: 28 millions

2001: Gotthard Tunnel (CH)

Killed: 9 people

Tunnel closure: 2 months

Repair costs: 14 millions (+ 30 millions economic loss)

Source: sueddeutsche.de

CONSEQUENCES OF FIRES IN ROAD TUNNELS

- Injured or killed people
- Tunnel closure
- Huge damages on infrastructure
- Traffic jams on alternative routes
- Longer travelling times
- High economic loss

...

Source: swissinfo.ch

MAIN CAUSES OF HEAVY VEHICLE FIRES

According to **Jean Claude MARTIN**, honorary professor of Université de Lausanne (CH), expert for fires and explosions:

- A heavy vehicle fire represents the worst danger potential inside a road tunnel
- The consequences are mainly depending on:
 - Tunnel related infrastructure, organisation and staff
 - Automated detection systems
 - Infrastructure and training level of emergency staff
 - Unpredictable factors:
 - Behaviour of defective vehicle and other travellers
- Following cases excerpt of an analysis for the organisation "Round Table of monotube and bidirectional tunnels" are illustrating the **four main causes** of heavy vehicle fires:

MAIN CAUSES OF HEAVY VEHICLE FIRES

Fire cause A: Fuel leak

Inflammation mechanism:

- Leaked fuel over engine or exhaust parts
- Puel vaporization due to contact with hot engine or exhaust components
- Spontaneous inflammation of air + fuel vapour mix

Combustion kinetics:

- Fast spreading of fire into the engine compartment
- Spreading of combustion gas and flames within minutes into the passenger compartment

Massive fuel spillage

- Inflammation mechanism:
 - Rupture of fuel tank caused by a collision
 - Fuel vaporization due to contact with hot engine or exhaust components
 - Spontaneous inflammation of air + fuel vapour mix
- Combustion kinetics:
 - ? Fast spreading of flames producing big quantities of dense, hot and toxic smoke
 - Fire spreads over the roadway onto other vehicles

MAIN CAUSES OF HEAVY VEHICLE FIRES

 Bus fire due to fuel leakage at Piumogna Road Tunnel, south ramp of Gotthard tunnel

MAIN CAUSES OF HEAVY VEHICLE FIRES

SICKSensor Intelligence.

- Big 2001 fire in Gotthard road tunnel caused by frontal collision with massive fuel spillage.
- 9 people killed by intoxication

MAIN CAUSES OF HEAVY VEHICLE FIRES

- Fire cause B: oil vaporization
- Rupture of turbo loader leads to lubricant oil to get in contact with hot exhaust components. The rupture is unforeseeable.
- Inflammation mechanism:
 - Oil gets vaporized and mixes to the air
 - Spontaneous inflammation of air + oil vapour mix
- Combustion kinetics:
 - The combustion kinetics of oil is fast and similar to fuel
 - Fast spreading of fire into the engine compartment
 - Slower spreading of flames to the rest of the vehicle due to confined engine compartment

MAIN CAUSES OF HEAVY VEHICLE FIRES

Rupture of turbo loader in Gotthard road tunnel without vehicle fire

MAIN CAUSES OF HEAVY VEHICLE FIRES

- Fire cause C: electrical defect
- Inflammation mechanism:
 - Electrical defect on a power line leading to a short circuit of the battery
- Combustion kinetics:
 - The heat source is powerful and persistent
 - Fast spreading of fire into the engine compartment and the rest of the vehicle
- The defect can be detected by infrared sensors before the vehicle starts to burn

MAIN CAUSES OF HEAVY VEHICLE FIRES

- Battery short circuit in Gotthard road tunnel
- Fire under control thanks to the fast intervention of fire fighters

MAIN CAUSES OF HEAVY VEHICLE FIRES

SICKSensor Intelligence.

- Fire cause D: friction
- Inflammation mechanism:
 - Priction in the braking system, bearings, clutch disc, or tires produces heat and when transmitted to a combustible component that enflames spontaneously.
- Combustion kinetics:
 - Heating due to friction can be quasi instantly
 - Fire spreads slowly to the entire vehicle
- The defect can be detected by infrared sensors before the vehicle starts to burn

SYSTEM DESCRIPTION

VHD = Vehicle Hot Spot Detector

The objective of a VHD is to **detect overheated vehicles** automatically which

- could catch fire
- are in a **bad operating condition** (safety hazard)

Source: swissinfo.ch

Source: swissinfo.ch

SYSTEM DESCRIPTION

https://www.youtube.com/watch?v=Polavg5hU5o

SYSTEM DESCRIPTION

Layout flexibility

Single lane free flow

One lane in a multi-lane fee-flow environment

SYSTEM DESCRIPTION

System overview (example)

SYSTEM DESCRIPTION

Sensors:

SYSTEM DESCRIPTION

Measurement of vehicle surface temperature with infrared (IR) cameras

■ Temperature range IR camera: 0 ... 600 °C (32 ... 1112 °F)

SYSTEM DESCRIPTION

3D Model

2D Thermo-Image

3D Thermo-Model

TEMPERATURE THRESHOLDS

Segmentation of vehicle parts based on:

- Vehicle classification
- Information in 3D Thermo-Model

Individual alarm temperature thresholds according to vehicle class and vehicle part

- ✓ Fully automated alarming
- ✓ Maximized alarming sensitivity
- ✓ Minimized false alarm ration

TEMPERATURE THRESHOLDS

Configurable temperature threshold

	truck	bus	car/van	motorbike
wheels	120°C	70°C	150°C	-
engine + exhaust	500°C	350°C	350°C	-
passenger zone	80°C	80°C	80°C	-
loading zone	120°C	80°C	80°C	-
contour	500°C	450°C	450°C	450°C

TEMPERATURE THRESHOLDS

Expertise based on

- ✓ Collaboration with experts
- ✓ Real fire tests
- √ 1.7 million recorded vehicles in database
- → We know what temperatures are driving aroun

OVERHEATED VEHICLES

What temperatures are driving around?

OVERHEATED VEHICLES

What temperatures are driving around?

OVERHEATED VEHICLES

OVERHEATED VEHICLES

TAKE OUT PROCEDURE

FEATURES

- ✓ Fully automated free flow measurement
- ✓ Individual alarm thresholds for different vehicle parts (wheels, exhaust, load, ...)
- ✓ GUI with 3D representation of the hotspot location on the vehicle
- ✓ Temperature measurement up to 600°C
- ✓ Upgradable with e.g. detection of hazardous goods plates or over-height
- ✓ Vehicle classification with up to 28 classes
- ✓ Reliable operation in all weather conditions

TARGET APPLICATIONS

Improving of safety and availability of traffic infrstructure such as:

Road & Railway Tunnels

Terminals for rolling highway

Ferry Terminals

...and other strategically important traffic infrastructures

REFERENCES

Gotthard, Switzerland

Road Tunnel (2 systems)

Solution

Detection of overheated vehicle parts in free-flow with:

- > 5x LMS511 for vehicle profiling
- > 2x IR camera for temperature measurement
- > 2x Photo camera for vehicle identification
- > Software with 3D GUI for vehicle analysis

Results

- ✓ Detection of 2 vehicles which pose a real safety risk every month! (24 vehicles in the year 2014)
- ✓ 2nd system was approved after test phase of 1st system due to the positive impact on the safety

Customer	ASTRA, Switzerland		
Handover	1 st system 2015, 2 nd system 2016		

REFERENCES

Arlberg, Austria

Road Tunnel (2 systems)

Solution

Detection of overheated vehicle parts at slow-speed with:

- > 5x LMS511 for vehicle profiling
- > 2x IR camera for temperature measurement
- > 2x Photo camera for vehicle identification
- > 1x HISIC for over-height detection
- ➤ Software with 3D GUI for vehicle analysis

Results

✓ Positive impact on the safety and efficiency

Customer	ASFINAG, Austria	
Handover	2016	

REFERENCES

Vereina, Switzerland

Terminal for rolling highway (2 systems)

Solution

Detection of overheated vehicle parts in free-flow with:

- > 5x LMS511 for vehicle profiling
- > 2x IR camera for temperature measurement
- > 2x Photo camera for vehicle identification
- > 1x HISIC for over-height detection
- ➤ Software with 3D GUI for vehicle analysis

Results

- ✓ Vehicle profile check before loading on car-transfer train
- ✓ Positive impact on the safety after risk analysis
- √ Supportive system for operating personnel

Customer	Rhätische Bahn (RhB), Switzerland	
Handover	2017	

MANY THANKS FOR YOUR ATTENTION

Stefan Gassmann

Head of Product Management Complex Systems SICK AG

stefan.gassmann@sick.ch